Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 846
Filter
1.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643118

ABSTRACT

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


Subject(s)
MicroRNAs , Myocarditis , Mice , Animals , Myocarditis/genetics , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , Pyroptosis , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/metabolism , Antagomirs/metabolism
2.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583011

ABSTRACT

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Antagomirs/metabolism , Antagomirs/pharmacology , Kidney , MicroRNAs/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Diabetes Mellitus/metabolism
3.
Sci Rep ; 14(1): 4896, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418830

ABSTRACT

This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-ß in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-ß gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-ß protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-ß content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.


Subject(s)
Chitosan , Cicatrix, Hypertrophic , Keloid , MicroRNAs , Humans , Keloid/pathology , Cicatrix, Hypertrophic/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Antagomirs/metabolism , Chitosan/pharmacology , Chitosan/metabolism , Cell Proliferation , Transforming Growth Factor beta/metabolism , Apoptosis , MicroRNAs/metabolism , Fibroblasts/metabolism , RNA, Messenger/metabolism
4.
Arthritis Rheumatol ; 76(1): 18-31, 2024 01.
Article in English | MEDLINE | ID: mdl-37527031

ABSTRACT

OBJECTIVE: We previously reported an increased expression of microRNA-155 (miR-155) in the blood monocytes of patients with rheumatoid arthritis (RA) that could be responsible for impaired monocyte polarization to anti-inflammatory M2-like macrophages. In this study, we employed two preclinical models of RA, collagen-induced arthritis and K/BxN serum transfer arthritis, to examine the therapeutic potential of antagomiR-155-5p entrapped within PEGylated (polyethylene glycol [PEG]) liposomes in resolution of arthritis and repolarization of monocytes towards the anti-inflammatory M2 phenotype. METHODS: AntagomiR-155-5p or antagomiR-control were encapsulated in PEG liposomes of 100 nm in size and -10 mV in zeta potential with high antagomiR loading efficiency (above 80%). Mice were injected intravenously with 1.5 nmol/100 µL PEG liposomes containing antagomiR-155-5p or control after the induction of arthritis. RESULTS: We demonstrated the biodistribution of fluorescently tagged PEG liposomes to inflamed joints one hour after the injection of fluorescently tagged PEG liposomes, as well as the liver's subsequent accumulation after 48 hours, indicative of hepatic clearance, in mice with arthritis. The injection of PEG liposomes containing antagomiR-155-5p decreased arthritis score and paw swelling compared with PEG liposomes containing antagomiR-control or the systemic delivery of free antagomiR-155-5p. Moreover, treatment with PEG liposomes containing antagomiR-155-5p led to the restoration of bone marrow monocyte defects in anti-inflammatory macrophage differentiation without any significant functional change in other immune cells, including splenic B and T cells. CONCLUSION: The injection of antagomiR-155-5p encapsulated in PEG liposomes allows the delivery of small RNA to monocytes and macrophages and reduces joint inflammation in murine models of RA, providing a promising strategy in human disease.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , MicroRNAs , Humans , Mice , Animals , Antagomirs/metabolism , Antagomirs/therapeutic use , Liposomes/metabolism , Liposomes/therapeutic use , Tissue Distribution , Macrophages , Anti-Inflammatory Agents/therapeutic use , MicroRNAs/metabolism
5.
J Appl Genet ; 65(2): 321-329, 2024 May.
Article in English | MEDLINE | ID: mdl-37993738

ABSTRACT

There is a lack of studies which explore and clarify the interactions that occur between host macrophage and Mycobacterium tuberculosis with regard to microRNA such as LNCNEAT1 and miR-373. The current study determines the mechanisms involved in the control of M. tuberculosis infection by macrophage using LNCNEAT1 and miR-373. The researchers collected different samples from healthy individuals, pulmonary TB patients, and samples like hMDMs cells and H37Rv infected MTB to determine the concentrations of inflammatory factors. The impact of NEAT1 and miR-373 upon macrophages was analyzed in NEAT1-specific siRNA (si-NEAT1), NEAT1 over-expression vector (pcDNA3.1-NEAT1), miR-373 mimic, miR-373 inhibitor (anti-miR-373), and negative control, and macrophages infected with H37Ra. The results inferred that among pulmonary TB patients, NEAT1 got heavily expressed while the expression level of miR-373 was poor. The number of inflammatory factors with pulmonary TB was notably higher. This got further amplified in macrophages after being infected with H37Ra, while no such observations found for miR-373. During post-transfection, low concentration of inflammatory factors was observed while the cells in si-NEAT1 group got proliferated in low volume compared to both pcDNA3.1-NEAT1 group and NEAT1 negative control group. However, the capability of apoptosis was higher compared to the other two groups (p < 0.05). There was an increase observed in inflammatory factors as well as proliferation in anti-miR-373 group compared to miR-373 mimics and miR-373-negative control group while a significant decline was observed in apoptosis. LNCNEAT1 aggravated the number of inflammatory factors in macrophages that got infected with MTB while on the other end, it mitigated both phagocytosis as well as the cellular immunity of macrophages. In addition to this, it enhanced the proliferation of infected cells and inhibited apoptosis via targeted regulation of miR-373, thus resulting in the development of TB.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Tuberculosis , Humans , Antagomirs/metabolism , Immunity , Macrophages/metabolism , Macrophages/microbiology , MicroRNAs/genetics , Mycobacterium tuberculosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tuberculosis/genetics
6.
CNS Neurosci Ther ; 30(4): e14537, 2024 04.
Article in English | MEDLINE | ID: mdl-37994671

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress and oxidative stress are the major pathologies encountered after intracerebral hemorrhage (ICH). Inositol-requiring enzyme-1 alpha (IRE1α) is the most evolutionarily conserved ER stress sensor, which plays a role in monitoring and responding to the accumulation of unfolded/misfolded proteins in the ER lumen. Recent studies have shown that ER stress is profoundly related to oxidative stress in physiological or pathological conditions. The purpose of this study was to investigate the role of IRE1α in oxidative stress and the potential mechanism. METHODS: A mouse model of ICH was established by autologous blood injection. The IRE1α phosphokinase inhibitor KIRA6 was administrated intranasally at 1 h after ICH, antagomiR-25 and agomiR-25 were injected intraventricularly at 24 h before ICH. Western blot analysis, RT-qPCR, immunofluorescence staining, hematoma volume, neurobehavioral tests, dihydroethidium (DHE) staining, H2O2 content, brain water content, body weight, Hematoxylin and Eosin (HE) staining, Nissl staining, Morris Water Maze (MWM) and Elevated Plus Maze (EPM) were performed. RESULTS: Endogenous phosphorylated IRE1α (p-IRE1α), miR-25-3p, and Nox4 were increased in the ICH model. Administration of KIRA6 downregulated miR-25-3p expression, upregulated Nox4 expression, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, reduced body weight, aggravated spatial learning and memory deficits, and increased anxiety levels. Then antagomiR-25 further upregulated the expression of Nox4, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, whereas agomiR-25 reversed the effects promoted by KIRA6. CONCLUSION: The IRE1α phosphokinase activity is involved in the oxidative stress response through miR-25/Nox4 pathway in the mouse ICH brain.


Subject(s)
Brain Edema , Imidazoles , MicroRNAs , Naphthalenes , Pyrazines , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Antagomirs/metabolism , Hydrogen Peroxide , Oxidative Stress , Cerebral Hemorrhage/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hematoma , Body Weight , NADPH Oxidase 4/genetics
7.
Neurol Res ; 46(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37842802

ABSTRACT

BACKGROUND: Diabetic neuropathic pain (DNP) is a serious complication for diabetic patients involving nervous system. MicroRNAs (miRNAs) are small-noncoding RNAs which are dysregulated in neuropathic pain, and might be critical molecules for pain treatment. Our previous study has shown miR-184-5p was significantly downregulated in DNP. Therefore, the mechanism of miR-184-5p in DNP was investigated in this study. METHODS: A DNP model was established through streptozotocin (STZ). The pharmacological tools were injected intrathecally, and pain behavior was evaluated by paw withdrawal mechanical thresholds (PWMTs). Bioinformatics analysis, Dual-luciferase reporter assay and fluorescence-in-situ-hybridization (FISH) were used to seek and confirm the potential target genes of miR-184-5p. The expression of relative genes and proteins was analyzed by quantitative reverse transcriptase real-time PCR (qPCR) and western blotting. RESULTS: MiR-184-5p expression was down-regulated in spinal dorsal on days 7 and 14 after STZ, while intrathecal administration of miR-184-5p agomir attenuates neuropathic pain induced by DNP and intrathecal miR-184-5p antagomir induces pain behaviors in naïve mice. Chemokine CC motif ligand 1 (CCL1) was found to be a potential target of miR-184-5p and the protein expression of CCL1 and the mRNA expression of CCR8 were up-regulated in spinal dorsal on days 7 and 14 after STZ. The luciferase reporter assay and FISH demonstrated that CCL1 is a direct target of miR-184-5p. MiR-184-5p overexpression attenuated the expression of CCL1/CCR8 in DNP; intrathecal miR-184-5p antagomir increased the expression of CCL1/CCR8 in spinal dorsal of naïve mice. CONCLUSION: This research illustrates that miR-184-5p alleviates DNP through the inhibition of CCL1/CCR8 signaling expression.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , MicroRNAs , Neuralgia , Animals , Humans , Mice , Antagomirs/pharmacology , Antagomirs/therapeutic use , Antagomirs/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Disease Models, Animal , Ligands , Luciferases/metabolism , MicroRNAs/metabolism , Neuralgia/drug therapy , Receptors, CCR8/metabolism , Spinal Cord/metabolism
8.
Sci Rep ; 13(1): 21919, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38082035

ABSTRACT

MicroRNAs are an emerging class of synaptic regulators. These small noncoding RNAs post-transcriptionally regulate gene expression, thereby altering neuronal pathways and shaping cell-to-cell communication. Their ability to rapidly alter gene expression and target multiple pathways makes them interesting candidates in the study of synaptic plasticity. Here, we demonstrate that the proconvulsive microRNA miR-324-5p regulates excitatory synapse structure and function in the hippocampus of mice. Both Mir324 knockout (KO) and miR-324-5p antagomir treatment significantly reduce dendritic spine density in the hippocampal CA1 subregion, and Mir324 KO, but not miR-324-5p antagomir treatment, shift dendritic spine morphology, reducing the proportion of thin, "unstable" spines. Western blot and quantitative Real-Time PCR revealed changes in protein and mRNA levels for potassium channels, cytoskeletal components, and synaptic markers, including MAP2 and Kv4.2, which are important for long-term potentiation (LTP). In line with these findings, slice electrophysiology revealed that LTP is severely impaired in Mir324 KO mice, while neurotransmitter release probability remains unchanged. Overall, this study demonstrates that miR-324-5p regulates dendritic spine density, morphology, and plasticity in the hippocampus, potentially via multiple cytoskeletal and synaptic modulators.


Subject(s)
Long-Term Potentiation , MicroRNAs , Mice , Animals , Long-Term Potentiation/physiology , Dendritic Spines/metabolism , Antagomirs/metabolism , Hippocampus/metabolism , Neuronal Plasticity/genetics , Synapses/metabolism , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism
9.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298473

ABSTRACT

Osteoarthritis (OA) is a prevalent form of arthritis that affects over 32.5 million adults worldwide, causing significant cartilage damage and disability. Unfortunately, there are currently no effective treatments for OA, highlighting the need for novel therapeutic approaches. Thrombomodulin (TM), a glycoprotein expressed by chondrocytes and other cell types, has an unknown role in OA. Here, we investigated the function of TM in chondrocytes and OA using various methods, including recombinant TM (rTM), transgenic mice lacking the TM lectin-like domain (TMLeD/LeD), and a microRNA (miRNA) antagomir that increased TM expression. Results showed that chondrocyte-expressed TM and soluble TM [sTM, like recombinant TM domain 1 to 3 (rTMD123)] enhanced cell growth and migration, blocked interleukin-1ß (IL-1ß)-mediated signaling and protected against knee function and bone integrity loss in an anterior cruciate ligament transection (ACLT)-induced mouse model of OA. Conversely, TMLeD/LeD mice exhibited accelerated knee function loss, while treatment with rTMD123 protected against cartilage loss even one-week post-surgery. The administration of an miRNA antagomir (miR-up-TM) also increased TM expression and protected against cartilage damage in the OA model. These findings suggested that chondrocyte TM plays a crucial role in counteracting OA, and miR-up-TM may represent a promising therapeutic approach to protect against cartilage-related disorders.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Mice , Animals , Chondrocytes/metabolism , Thrombomodulin/metabolism , Antagomirs/metabolism , Cartilage, Articular/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , MicroRNAs/metabolism , Interleukin-1beta/metabolism
10.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108398

ABSTRACT

Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Methylation , MicroRNAs/metabolism , Histone Code , Antagomirs/metabolism , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Methyltransferases/metabolism , DNA/metabolism
11.
Mol Ther ; 31(5): 1332-1345, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37012704

ABSTRACT

Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.


Subject(s)
Extracellular Vesicles , MicroRNAs , Mice , Animals , Antagomirs/metabolism , Morphine/pharmacology , Morphine/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Brain/metabolism , Extracellular Vesicles/metabolism
12.
J Control Release ; 358: 259-272, 2023 06.
Article in English | MEDLINE | ID: mdl-37121514

ABSTRACT

Osteoporosis (OP) affects millions worldwide but currently cannot be cured. Suppressing the level of miR-214 in osteoclasts by the anti-miRNA oligonucleotide (AMO) anti-miR-214 reverses bone absorption and provides a potential treatment. Here we report a peptide-guided delivery strategy using red blood cell extracellular vesicles (RBCEVs) as the vehicle to realize osteoclast-targeted delivery of anti-miR-214. A bi-functional peptide, TBP-CP05, which binds to both the CD63 on RBCEVs and receptors on osteoclasts, acts as the guide. TBP-CP05 binds with RBCEVs through CP05, displays the TRAP-binding peptide (TBP) on the surface of EVs, and endows RBCEVs with osteoclast-targeting capability both in vitro and in vivo. Intravenous injection of the osteoclast-targeting RBCEVs (OT-RBCEVs) led to the enrichment of EVs in the bone skeleton, significant inhibition of the osteoclast activity, elevated osteoblast activity, and improved bone density in osteoporotic mice. Altogether, this work demonstrates efficient guidance of drug-loaded EVs to the targeted cells in vivo using bi-functional fusion peptides, and showcases that targeted delivery of anti-miR-214 by OT-RBCEVs may be a viable method for OP treatment. SIGNIFICANCE STATEMENT. Surface functionalization of EVs endows these nanovesicles cell-specific targeting property which guides the drug cargos to specific tissues and cells with higher accuracy, longer retention, and minimal off-target effects. Methods to functionalize EVs with minimal procedures are highly desired for clinical applications. Here we present a facile method using a bifunctional fusion peptide to guide RBCEVs to osteoclasts. A simple incubation of the bifunctional peptide and RBCEVs results in osteoclast-targeting RBCEVs (OT-RBCEVs) that effectively deliver anti-miR-214 to osteoclasts in vivo in a mouse model of osteoporosis, bringing a potential therapy to osteoporotic patients. This is, to our knowledge, the first report on peptide functionalization of RBCEVs and osteoclast-targeted delivery using RBCEVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Osteoporosis , Mice , Animals , Osteoclasts/metabolism , MicroRNAs/genetics , Oligonucleotides/genetics , Antagomirs/metabolism , Antagomirs/pharmacology , Osteoporosis/metabolism , Extracellular Vesicles/metabolism , Peptides/pharmacology , Erythrocytes/metabolism
13.
Inflamm Res ; 72(4): 715-729, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36749385

ABSTRACT

INTRODUCTION: Sepsis or endotoxemia can induce intestinal dysfunction in the epithelial and immune barrier. Th17 cells, a distinct subset of CD4+ T-helper cells, act as "border patrol" in the intestine under pathological condition and in the previous studies, Th17 cells exhibited an ambiguous function in intestinal inflammation. Our study will explore a specific role of Th17 cells and its relevant mechanism in endotoxemia-induced intestinal injury. MATERIALS AND METHODS: Lipopolysaccharide was used to establish mouse model of endotoxemia. miR-681 was analyzed by RT-PCR and northern blot analysis and its regulation by HIF-1α was determined by chromatin immunoprecipitation and luciferase reporter assay. Intestinal Th17 cells isolated from endotoxemic mice were quantitatively evaluated by flow cytometry and its recruitment to the intestine controlled by miR-681/CCR6 pathway was assessed by using anti-miRNA treatment and CCR6 knockout mice. Intestinal histopathology, villus length, intestinal inflammation, intestinal permeability, bacterial translocation and survival were investigated, by histology and TUNEL analysis, ELISA, measurement of diamine oxidase, bacterial culture, with or without anti-miR-681 treatment in endotoxemic wild-type and (or) CCR6 knockout mice. RESULTS: In this study, we found that miR-681 was significantly promoted in intestinal Th17 cells during endotoxemia, which was dependent on hypoxia-inducible factor-1α (HIF-1α). Interestingly, miR-681 could directly suppress CCR6, which was a critical modulator for Th17 cell recruitment to the intestines. In vivo, anti-miR-681 enhanced survival, increased number of intestinal Th17 cells, reduced crypt and villi apoptosis, decreased intestinal inflammation and bacterial translocation, resulting in protection against endotoxemia-induced intestinal injury in mice. However, CCR6 deficiency could neutralize the beneficial effect of anti-miR-681 on the intestine during endotoxemia, suggesting that the increment of intestinal Th17 cells caused by anti-miR-681 relies on CCR6 expression. CONCLUSION: The results of the study indicate that control of intestinal Th17 cells by regulating novel miR-681/CCR6 signaling attenuates endotoxemia-induced intestinal injury.


Subject(s)
Endotoxemia , Th17 Cells , Mice , Animals , Endotoxemia/metabolism , Antagomirs/metabolism , Antagomirs/pharmacology , Intestines , Intestinal Mucosa , Receptors, CCR6/genetics
14.
Am J Physiol Heart Circ Physiol ; 324(5): H598-H609, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36827227

ABSTRACT

Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.


Subject(s)
Heart Failure , Insulin Resistance , MicroRNAs , Mice , Animals , Insulin Resistance/genetics , Antagomirs/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Insulin/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism
15.
J Orthop Surg Res ; 18(1): 17, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609253

ABSTRACT

BACKGROUND: Cervical and lumbar pain is usually caused by degeneration of the nucleus pulposus (NP). As a powerful therapeutic strategy, tissue engineering can effectively restore the normal biological properties of the spinal unit. Previous studies suggested that poly(lactic-co-glycolic acid) (PLGA) microspheres are effective carriers of cells and biomolecules in NP tissue engineering. This study aims to explore the therapeutic effect of PLGA microspheres coloaded with transforming growth factor-ß1 (TGF-ß1) and anti-miR-141 on intervertebral disc degeneration (IDD). METHODS: PLGA microspheres were characterized by scanning electron microscopy, a laser particle size analyzer, and laser confocal microscopy. The in vitro release rate of biomolecules from the microspheres was analyzed by reversed-phase high-performance liquid chromatography and agarose gel electrophoresis. The rat NP cells (NPCs) treated with the solutions released from microspheres for different lengths of time were assigned to a control group (Ctrl), an empty PLGA microsphere group (Mock microsphere, MS), a TGF-ß1-loaded PLGA microsphere group (TMS), an anti-miR-141-loaded PLGA microsphere group (AMS), and an anti-miR-141 + TGF-ß1-loaded PLGA microsphere group (ATMS). The proliferation and apoptosis of NPCs were observed by alamar blue and flow cytometry. The gene and protein expression of cartilage markers COL2A1 and ACAN were observed by RT-qPCR and Western blot. The rat model of IDD was established by tail puncture. Rats were divided into a control group (Ctrl), a mock operation group (Mock), a TGF-ß1 microsphere group (TMS), an anti-miR-141 microsphere group (AMS), and an anti-miR-141 + TGF-ß1 microsphere group (ATMS). The degree of rat tail IDD was assessed in each group through magnetic resonance imaging (MRI), safranin O-fast green staining, immunohistochemistry, and Western blotting. RESULTS: PLGA microspheres were stably coloaded and could sustainably release TGF-ß1 and anti-miR-141. The results of in vitro cell experiments showed that the release solution of PLGA microspheres significantly enhanced the proliferation of NPCs without inducing their apoptosis and significantly upregulated cartilage markers in NPCs. The effect of microspheres was greater in the ATMS group than that in the TMS group and AMS group. In vivo experiments showed that IDD could be effectively inhibited and reversed by adding microspheres coloaded with TGF-ß1 and/or anti-miR-141, and the effect was greatest in the ATMS group. CONCLUSION: PLGA microspheres coloaded with TGF-ß1 and anti-miR-141 can reverse IDD by inhibiting the degeneration of NPCs.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , MicroRNAs , Animals , Rats , Antagomirs/metabolism , Cartilage/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/pathology , MicroRNAs/metabolism , Microspheres , Transforming Growth Factor beta1/metabolism , Polyglactin 910
16.
Adv Healthc Mater ; 12(12): e2202859, 2023 05.
Article in English | MEDLINE | ID: mdl-36636995

ABSTRACT

Peptide nucleic acids (PNAs) are used/applied in various studies to target genomic DNA and RNA to modulate gene expression. Non-specific targeting and rapid elimination always remain a challenge for PNA-based applications. Here, the synthesis, characterization, in vitro and in vivo study of di lactobionic acid (diLBA) and tris N-acetyl galactosamine (tGalNAc) conjugated PNAs for liver-targeted delivery are reported. For proof of concept, diLBA, and tGalNAc conjugated PNAs (anti-miR-122 PNAs) were synthesized to target microRNA-122 (miR-122) which is over-expressed in the hepatic tissue. Different lengths of anti-miR-122 PNAs conjugated with diLBA and tGalNAc are tested. Cell culture and in vivo analyses to determine biodistribution, efficacy, and toxicity profile are performed. This work indicates that diLBA conjugates show significant retention in hepatocytes in addition to tGalNAc conjugates after in vivo delivery. Full-length PNA conjugates show significant downregulation of miR-122 levels and subsequent de-repression of its downstream targets with no evidence of toxicity. The results provide a robust framework for ligand-conjugated delivery systems for PNAs that can be explored for broader biomedical applications.


Subject(s)
Peptide Nucleic Acids , Peptide Nucleic Acids/pharmacology , Peptide Nucleic Acids/chemistry , Acetylgalactosamine/metabolism , Tissue Distribution , Antagomirs/metabolism , Hepatocytes/metabolism
17.
Theranostics ; 13(1): 231-249, 2023.
Article in English | MEDLINE | ID: mdl-36593966

ABSTRACT

Rationale: Diabetes exacerbates the prevalence and severity of periodontitis, leading to severe periodontal destruction and ultimately tooth loss. Delayed resolution of inflammation is a major contributor to diabetic periodontitis (DP) pathogenesis, but the underlying mechanisms of this imbalanced immune homeostasis remain unclear. Methods: We collected periodontium from periodontitis with or without diabetes to confirm the dysfunctional neutrophils and macrophages in aggravated inflammatory damage and impaired inflammation resolution. Our in vitro experiments confirmed that SIRT6 inhibited macrophage efferocytosis by restraining miR-216a-5p-216b-5p-217 cluster maturation through ''non-canonical'' microprocessor complex (RNA pulldown, RIP, immunostaining, CHIP, Luciferase assays, and FISH). Moreover, we constructed m6SKO mice that underwent LIP-induced periodontitis to explore the in vitro and in vivo effect of SIRT6 on macrophage efferocytosis. Finally, antagomiR-217, a miRNA antagonism, was delivered into the periodontium to treat LIP-induced diabetic periodontitis. Results: We discovered that insufficient SIRT6 as a histone deacetylase in macrophages led to unresolved inflammation and aggravated periodontitis in both human and mouse DP with accumulated apoptotic neutrophil (AN) and higher generation of neutrophil extracellular traps. Mechanistically, we validated that macrophage underwent high glucose stimulation resulting in disturbance of the SIRT6-miR-216/217 axis that triggered impeded efferocytosis of AN through targeting the DEL-1/CD36 axis directly. Furthermore, we demonstrated the inhibitory role of SIRT6 for MIR217HG transcription and identified a non-canonical action of microprocessor that SIRT6 epigenetically hindered the splicing of the primary miR-216/217 via the complex of hnRNPA2B1, DGCR8, and Drosha. Notably, by constructing myeloid-specific deletion of SIRT6 mice and locally delivering antagomir-217 in DP models, we strengthened the in vivo effect of this axis in regulating macrophage efferocytosis and inflammation resolution in DP. Conclusions: Our findings delineated the emerging role of SIRT6 in mediating metabolic dysfunction-associated inflammation, and therapeutically targeting this regulatory axis might be a promising strategy for treating diabetes-associated inflammatory diseases.


Subject(s)
Diabetes Mellitus , MicroRNAs , Periodontitis , Phagocytosis , Sirtuins , Animals , Humans , Mice , Antagomirs/metabolism , Diabetes Mellitus/metabolism , Inflammation/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Periodontitis/genetics , Periodontitis/metabolism , RNA-Binding Proteins/metabolism , Sirtuins/genetics , Sirtuins/metabolism
18.
J Neurochem ; 164(5): 643-657, 2023 03.
Article in English | MEDLINE | ID: mdl-36527420

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively attacks motor neurons, and leads to progressive muscle weakness and death. A common pathological feature is the misfolding, aggregation, and cytoplasmic mislocalization of TAR DNA-binding protein 43 (TDP-43) proteins in more than 95% of ALS patients, suggesting a universal role TDP-43 proteinopathy in ALS. Mutations in SQSTM1/p62 have been identified in familial and sporadic cases of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate their target genes. Emerging evidence indicates that miRNA dysregulation is associated with neuronal toxicity and mitochondrial dysfunction, and also plays a pivotal role in ALS pathogenesis. Here, we report the first evidence that miR-183-5p is aberrantly upregulated in spinal cords of patients with ALS. Using luciferase reporter assays and miR-183-5p agomirs, we demonstrate that miR-183-5p regulates the SQSTM1/p62 3'-untranslated region to suppress expression. A miR-183-5p agomir attenuated SOSTM1/p62 expression and led to an increase in TDP-43 protein levels in neuronal and non-neuronal cells. In contrast, a miR-183-5p antagomir decreased TDP-43 but increased SQSTM1/p62 protein levels. The antagomir repressed formation of stress granules and aggregated TDP43 protein in neuronal cells under stress-induced conditions and protected against cytotoxicity. Knockdown of SQSTM1/p62 decreased total ubiquitination and increased TDP-43 protein aggregation, indicating that SQSTM1/p62 may play a protective role in cells. In summary, our study reveals a novel mechanism of TDP-43 proteinopathy mediated by the miR-183-5p and provides a molecular link between aberrant RNA processing and protein degradation, two major pillars in ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , MicroRNAs , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Sequestosome-1 Protein/metabolism , Neurodegenerative Diseases/metabolism , Antagomirs/metabolism , Motor Neurons/metabolism , MicroRNAs/metabolism , DNA-Binding Proteins/metabolism
19.
Hypertension ; 80(2): 370-384, 2023 02.
Article in English | MEDLINE | ID: mdl-36519433

ABSTRACT

BACKGROUND: Preeclampsia is a complicated syndrome with marked heterogeneity. The biomarker-based classification for this syndrome is more constructive to the targeted prevention and treatment of preeclampsia. It has been reported that preeclamptic patients had elevated microRNA-155 (miR-155) in placentas or circulation. Here, we investigated the characteristics of patients with high placental miR-155 (pl-miR-155). METHODS: Based on the 95th percentile (P95) of pl-miR-155 in controls, preeclamptic patients were divided into high miR-155 group (≥P95) and normal miR-155 group (

Subject(s)
MicroRNAs , Pre-Eclampsia , Animals , Female , Mice , Pregnancy , Antagomirs/metabolism , Biomarkers/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Placentation , Pre-Eclampsia/diagnosis
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(11): 998-1004, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36328430

ABSTRACT

Objective To investigate the effect of miR-29a interference on mitochondrial fusion and fission of cardiomyocytes induced by oxygen and glucose deprivation/reoxygenation (OGD/R). Methods H9c2 cells were divided into normal control group, model group, negative control group and miR-29a interference group. Rat H9c2 cardiomyocyte injury model was induced by OGD/R. Negative control (NC) group cells were transfected with anti-NC, while miR-29a interference group cells were transfected with anti-miR-29a, and normal control group cells were not transfected. Reverse transcription PCR was used to detect miR-29a interference efficiency, along with CCK-8 assay to detect cell proliferation ratio, flow cytometry to detect cell apoptosis rate and mitochondrial membrane potential change, and kit to detect superoxide dismutase(SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH)contents. Western blot analysis was employed to test the levels of Bcl2-associated X protein (BAX), Bcl2 antagonist/killer (BAK), caspase-9, mitochondrial fission protein 1(Fis1), mitofusin 1 (Mfn1), Mfn2, optic atrophy 1(OPA1), phosphoryerated extracellular signal-regulated kinase (p-ERK) and phosphoryerated dynamin related protein-1(p-Drp1). Results Compared with OGD/R group, the expression level of miR-29a of H9c2 cells in OGD/R group treated with anti-miR-29a decreased significantly, together with the findings including significantly increased cell proliferation factor, decreased apoptosis rate, increased SOD content, decreased MDA and LDH contents, as well as significantly increased mitochondrial membrane potential. The protein levels of BAX, BAK, caspase-9, Fis1, Mfn1, Mfn2, OPA1, p-ERK and p-Drp1 significantly decreased. Conclusion Interference with miR-29a expression can promote OGD/R-induced proliferation of H9c2 cells, inhibit cell apoptosis, reduce mitochondrial oxidative stress level, enhance mitochondrial membrane potential, and alleviate mitochondrial over-fusion and fission of myocardial cells.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Rats , Animals , Mitochondrial Dynamics , Glucose/metabolism , Oxygen/pharmacology , Oxygen/metabolism , Down-Regulation , bcl-2-Associated X Protein/metabolism , Caspase 9/metabolism , Antagomirs/metabolism , Antagomirs/pharmacology , Apoptosis , Superoxide Dismutase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...